WIDRI

Review of worldwide gasification water Descriptions and liquid fuels from waste and biomass

 $AIR\ AND\ WASTE\ MANAGEMENT\ ASSOCIATION\ (A\&WMA)$ $QUEBEC\ SECTION$

Wednesday, May 29, 2013 2:00PM –3:00PM ET, Montreal, QC, Canada

Marco J. Castaldi

Associate Professor Chemical Engineering Department The City College of New York City University of New York

Gasification or Combustion

- Sub stoichiometric air
- Lower total volumetric flow
- Lower fly ash carry over
- Pollutants in reduced form (H₂S, COS)
- Char Low T
- Slag vitrification high T
- Scale: ~ 100 tons/day

- Excess air
- Higher volumetric flowrate
- Fly ash carry over
- Pollutants in oxidized form (SO_x, NO_x, etc)
- Bottom ash
- Scale: ~ 1500 tons/day

Combustion Option

Primarily generate heat 1) $C + O_2 \rightarrow CO_2 + Heat$

2) C + $1/2O_2 \rightarrow CO + Heat$

4) Char + Heat → Slag

5) Slag → Clinker + Heat

Combustion & Catalysis Laboratory

A heat engine converts heat into work. efficiency is given by $\eta = \left|w\right| / \left.q_h\right.$

$$\therefore \quad \eta = 1$$
 - $|q_c| \, / \, q_h$

 $\therefore \ \eta = 1 - |T_c|/\ T_h$

Catalysis Laboratory

Combustion Status

(metric tons)

- Number of nations using WTE: 35
- Total number of WTE plants > 600
- Estimated global WTE: 170 million tpy
- U.S. WTE: 26 million tpy
- Urban global landfilling: 830 million tpy
- U.S. landfilling: 225 million tpy
- Recent expansions of ~800,000 tpy
- New US Facility ~ 1 million tpy (2015)

Gasification status

- 163 commercial gasification projects in development worldwide consisting of a total of 468 gasifiers. DOE survey
- ~ 120 plants began operations between 1960 and 2000
 - majority (more than 72 plants) commissioned after 1980.
 Currently ~34 new plants are at various stages of planning and construction.
- The majority of the existing plants were designed and constructed to produce a synthetic gas, consisting primarily of H₂ and CO
- Ethanol EnerChem/City of Edmonton 2008
- Energos (Sweden, UK) building plants @ <150,000 tpy

Combustion & Catalysis Laboratory

Totaling ~ 35 million tpy (metric)

Chemicals From Waste

- Military MISER program
 - Trash/Biomass/Solid hydrocarbons to fuels
- American Chemical Society (ACS)
 - Letters to the editor "chemicals from waste"
 - C&EN April 2006
- Discover Magazine
 - "DATA" Section: The Ultimate Garbage Disposal
 - · How to turn trash into clean energy
- Solena Group Inc contract with UK for aviation fuels
- EnerChem/City of Edmonton to make EtOH 2013

Pyrolysis, Gasification or Combustion

- Only heat (external or internal)
- Want liquid, Gases not desired
- Pollutants in reduced form (H₂S, COS)
- · High Char
- Scale: ~ 10 tons/day

- Sub stoichiometric air
- Lower total volumetric flow
- Lower fly ash carry over
- Pollutants in reduced form (H₂S, COS)
- Char @ Low T
- Vitrified Slag @ high T
- Scale: ~ 100 tons/day

- Excess air
- Higher volumetric flowrate

WIDRI

- Fly ash carry over
- Pollutants in oxidized form (SO_x, NO_x, etc)
- · Bottom ash
- Scale: ~ 1500 tons/day

No additional Oxygen (only heat) Unconverted solid will remain! Some additional Oxygen (or air) Heat added or comes from reactions Much additional Oxygen (or air) Heat comes from reactions

Technology	System Summar Energy (kWh/ton)	Capital Costs (\$/ton)
		•
InEnTec	530	~77 (est)
Alter NRG	617	81
Furanlasma	605	86
Europlasma	003	80
Plasco	530	86
Newer WTE	650	74
Grate WTE (US avg)	550	60

Acknowledgements

Sustainability in Urban Environment

Capstone project (Engineering, Science & Architecture)

 $"An\ Integrated\ Waste-to-Energy\ Plan\ for\ New\ York\ City"$

You, The Audience for Attention